Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minux(+(x, y)) → +(minus(y), minus(x))
+(minus(x), +(x, y)) → y
+(+(x, y), minus(y)) → x

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minux(+(x, y)) → +(minus(y), minus(x))
+(minus(x), +(x, y)) → y
+(+(x, y), minus(y)) → x

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

minus(minus(x)) → x
minux(+(x, y)) → +(minus(y), minus(x))
+(minus(x), +(x, y)) → y
+(+(x, y), minus(y)) → x

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

minus(minus(x)) → x
minux(+(x, y)) → +(minus(y), minus(x))
+(minus(x), +(x, y)) → y
+(+(x, y), minus(y)) → x
Used ordering:
Polynomial interpretation [25]:

POL(+(x1, x2)) = 1 + x1 + x2   
POL(minus(x1)) = 1 + x1   
POL(minux(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RisEmptyProof

Q restricted rewrite system:
R is empty.
Q is empty.

The TRS R is empty. Hence, termination is trivially proven.